Measuring Ontario’s Prosperity:
Developing an Economic Indicator System

The Institute for Competitiveness & Prosperity
Working Paper No. 2
August 2002
The Institute for Competitiveness and Prosperity is an independent not-for-profit organization established in 2001 to serve as the research arm of Ontario’s Task Force on Competitiveness, Productivity and Economic Progress.

Working Papers published by the Institute are primarily intended to inform the work of the Task Force. In addition, they are designed to raise public awareness and stimulate debate on a range of issues related to competitiveness and prosperity.

The mandate of the Task Force, which was announced in the April 2001 Speech from the Throne, is to measure and monitor Ontario’s competitiveness, productivity and economic progress compared to other provinces and U.S. states and to report to the public on a regular basis.

It is the aspiration of the Task Force to have a significant influence in increasing Ontario’s competitiveness, productivity and capacity for innovation. Thus, they believe, will help ensure continued success in the creation of good jobs, increased prosperity and a high quality of life for all Ontarians. The Task Force intends to seek breakthrough findings from their research and to propose significant innovations in public policy which stimulate businesses, governments and educational institutions to take action.
Measuring Ontario’s Prosperity: Developing an Economic Indicator System
Contents

Foreword and Acknowledgements
4

Executive Summary
6

Laying the Ground Work
8

- Ontario’s GDP per Capita Performance
- The Drivers of GDP per Capita
- The Importance of Clusters of Traded Industries

Our Approach to An Indicators System
10

- Why an Indicator System
- Some Cautions About Indicator Systems

Indicators: The Basic Criteria
12
- Why GDP per Capita

Box 1: GDP As a Measure
13

Mapping the Performance Gap
15

- Box 2: Mapping the Performance Gap

Profile
20

- Intensity

Utilization: Participation Rate
22

- Utilization: Employment Rate

Effectiveness: Degree of Urbanization
23

Effectiveness: Mix of Clusters
25

Effectiveness: Cluster Content
25

Effectiveness: Other Drivers
25

The Capacity for Innovation and Upgrading
27

- Attitudes

Investments
30

- Box 3: The Creative Class and Economic Growth
- Box 4: Postsecondary Education and Prosperity

Box 5: Taxes and Motivations
32

Motivations
34

- How the Capacity for Innovation and Upgrading Drives Performance

Box 6: Georgia’s Smart Investment in Innovation
36

Identifying Environmental and Social Measures
38

Conclusion
40

Next Steps and Further Research
41

References
42
List of Table and Figures

Table 1: GDP per Capita, Ontario and Selected North American Jurisdictions 9
Figure 1: Regional Economic Competitiveness Indicator System 12
Table 2: Drivers of GDP per Capita 17
Figure 2: Mapping the Performance Gap 18
Table 3: Performance Gap Calculations, Ontario and Selected North American Jurisdictions 19
Figure 3: Profile of Ontario and Selected North American Jurisdictions 20
Figure 4: Average Weekly Hours Worked, U. S. versus Canada 21
Figure 5: Participation Rates, Ontario and Selected North American Jurisdictions 22
Figure 6: Employment Rates, Ontario and Selected North American Jurisdictions 22
Figure 7: Per cent of Population in Urban Areas versus Labour Productivity 23
Table 4: Ontario’s Mix of Clusters 24
Figure 8: Factors Driving Innovation and Upgrading 28
Figure 9: The Porter Diamond 29
Figure 12: Marginal Effective Tax Rate on Labour, Net of Subsidies 32
Figure 13: Marginal Effective Tax Rates on Capital, Net of Subsidies 33
Table 5: Measuring the Capacity for Innovation and Upgrading 34
Foreword and Acknowledgements
As the research arm of the Task Force on Productivity, Competitiveness, and Economic Progress, the Institute for Competitiveness and Prosperity reports its research findings to Ontario’s stakeholders in a series of Working Papers. I am pleased to present the Institute’s second Working Paper, which is intended both to assist the Task Force in its work on benchmarking Ontario’s performance and to stimulate public debate on the economic challenges facing the province of Ontario.

In this paper, we propose an Indicator System, which will guide the selection and ongoing measurement of key indicators of the innovation and upgrading that are required to strengthen the province’s relative position in North America.

We deconstruct GDP per capita – our selected capstone indicator of economic progress – into six component drivers for which information is currently available. Building on our previous work, we explore how these drivers are shaped and how they interact with Ontario’s industry clusters, which we mapped in Working Paper No. 1.

We find yet more evidence that Ontario performs extremely well compared to its global competitors, but against its North American peer group, its performance is middling at best.

We have found that Ontario has a firm foundation on which to build its economic future. The prosperity of all Ontarians rests on making strategic, thoughtful choices. While the province is economically strong and well equipped to handle future challenges, we have found areas in which inertia and fear of change could squander our ample advantages.

We gratefully acknowledge the ongoing support from our colleagues at the Institute for Strategy and Competitiveness at Harvard Business School.

We look forward to discussing this Working Paper with Ontarians.

Roger L. Martin, Chairman
Institute for Competitiveness and Prosperity
Executive Summary
An important part of the mandate for the Task Force on Competitiveness, Productivity, and Economic Progress and for the Institute for Competitiveness and Prosperity is the development of an economic indicator system.

Quoting from the Task Force mandate:

• Create a framework to assess Ontario’s productivity, competitiveness, and economic progress compared with the other 9 provinces and the 50 U.S. states;

• Spearhead the identification and undertake measurement of Ontario’s productivity, competitiveness and economic progress indicators compared with the other 9 provinces and the 50 U.S. states;

• Confer with the public/stakeholders and experts on the best way to benchmark Ontario’s productivity, competitiveness and economic progress.

This Working Paper has been developed with these three mandates in mind.

In the first Working Paper we put forward GDP per capita as the measure of Ontario’s economic progress and proposed a measurement framework with four components – effectiveness, utilization, profile, and intensity. The Working Paper also looked for the first time at Ontario’s clusters of traded industries – concluding that Ontario had an above-average presence of traded clusters.

Nevertheless, we found that Ontario trailed all but two of the fifteen other North American jurisdictions we proposed as the set against which we would benchmark our economic performance. In fact our GDP per capita is 13.8 per cent behind the median of these jurisdictions. This translates to a performance gap of $4,080 in GDP per capita or CDN $6,000 (using purchasing power parity).

We think Ontarians ought to aspire to improve our standing within this group and, along with the Task Force on Competitiveness, Productivity, and Economic Progress, want to engage in a consultation process to help define these economic aspirations.

An indicator system will be useful to understanding the nature of the challenge before us, identifying policy recommendations for Ontario’s stakeholders and tracking our progress against our aspirations.

As a first step in developing an Indicator System, we sub-divide the four components of GDP per capita into eight drivers that are measurable and comparable between jurisdictions. We then identify the contributions to the performance gap from each of the drivers.

This analysis is helpful in describing Ontario’s economic progress and the size of the gap in meeting our aspirations. The challenge for an indicator system is to identify the measures that affect, not just describe, our economic performance. To that end we are proposing as part of the Indicator System a series of three measures that capture our capacity for innovating and upgrading. These three measures – attitudes, investments, and motivations – operate at the level of the individual, the firm, and the cluster. These measures interact with the drivers described above to strengthen our economic performance.

Following a consultation process related to this and our first Working Paper, the Task Force will propose an aspiration goal for Ontarians and set out more detailed recommendations on how we intend to gather and synthesize the measures in our proposed Indicator System. Future Working Papers from the Institute will report Ontario’s progress towards these ends.
In our first Working Paper, A View of Ontario: Ontario’s Clusters of Innovation, we established the base for the initial work by the Task Force on Productivity, Competitiveness, and Economic Progress and the Institute for Competitiveness and Prosperity by articulating the case for linking productivity and competitiveness with economic progress.

This first Working Paper had four conclusions:

• Ontario is one of the world’s leaders in GDP per capita, the main driver of prosperity, but lags many other North American jurisdictions

• Effectiveness and Utilization provide the best leverage for increasing GDP per capita long term

• Clusters of traded industries contribute to increasing a region’s competitiveness

• Ontario has strength and diversity in its clusters of traded industries

In more detail the first Working Paper discusses:

Ontario’s GDP per capita performance: Ontario is a world leader in GDP per capita, a key measure of an economy’s strength and its citizens’ living standards. For jurisdictions of substantial size (over 6 million or at least half Ontario’s size), Ontario is among the most prosperous in the world outside the United States. The Institute has selected the 16 North American jurisdictions that have populations greater than 6 million for closer examination. Within this peer group, Ontario stands 14th – ahead of Florida and Quebec as shown in Table 1. Our GDP per capita is fully 32.2 per cent lower than Massachusetts, the North American leader. Against the median of the 16 jurisdictions Ontario’s GDP per capita is 13.8 per cent behind.

The drivers of GDP per capita. In the first Working Paper we drew upon the performance model which breaks down GDP per capita into its four components, as seen in the GDP identity below.

\[
\text{GDP per capita} = \frac{\text{GDP}}{\text{hours worked} \times \text{jobs} \times \text{potential labour force} \times \text{population}}
\]

Two of the components, effectiveness and utilization, appear to have the most leverage to affect GDP per capita. Several economists point to Canada’s persistent inability to keep pace with the productivity (effectiveness) performance of the G7 countries, particularly the U.S. Work by John Baldwin and others at Statistics Canada identified utilization performance as the key difference between Canada and the United States between the 1980s and
the 1990s thereby explaining the increased gap in GDP per capita performance over the same period.

The other two factors – intensity and profile – change little in the short term.

The importance of clusters of traded industries

The first Working Paper set out the importance of clusters citing work done by Professor Michael Porter of the Institute for Strategy and Competitiveness at Harvard Business School. The Porter Diamond (see Figure 9, page 29) describes the factors that provide pressure for clusters to perform well (rivalry and demand conditions) and factors that provide support (factor inputs and related industries). His research has shown that clusters of traded industries tend to be more productive, innovative and pay higher wages. The Working Paper showed for the first time Ontario’s clusters of traded industries in comparison to the rest of Canada and the United States. In fact, Ontario has the highest percentage of its employment in clusters of traded industries of all North American jurisdictions we studied. The challenge is to explain Ontario’s mediocre economic performance against its peer group given the strong presence of clusters of traded industries in the province.

Ontario’s mix of clusters

The first Working Paper showed the diversity of Ontario’s clusters compared to other jurisdictions, explored selected clusters, and provided some city-specific results. It confirmed the significance of our Automotive, Financial Services, and Entertainment clusters and revealed the relatively high ranking of our Pharmaceuticals and Biotechnology Cluster within North America.

The first Working Paper showed the fundamental strength of Ontario’s economy, but set the bar higher for its continued progress – which will be the result of innovation and competitiveness. As Roger Martin stated in the first Working Paper,

Very few countries have set high standards of economic performance – which will be the result of innovation and competitiveness. As Roger Martin stated in the first Working Paper,

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Massachusetts</td>
<td>$44,578</td>
<td>$43,051</td>
<td>$41,524</td>
</tr>
<tr>
<td>New Jersey</td>
<td>$43,351</td>
<td>$40,222</td>
<td>$37,893</td>
</tr>
<tr>
<td>New York</td>
<td>$42,215</td>
<td>$39,086</td>
<td>$36,958</td>
</tr>
<tr>
<td>California</td>
<td>$39,240</td>
<td>$35,112</td>
<td>$32,984</td>
</tr>
<tr>
<td>Illinois</td>
<td>$37,024</td>
<td>$32,918</td>
<td>$30,752</td>
</tr>
<tr>
<td>Virginia</td>
<td>$36,099</td>
<td>$31,993</td>
<td>$29,837</td>
</tr>
<tr>
<td>Georgia</td>
<td>$36,175</td>
<td>$32,149</td>
<td>$29,083</td>
</tr>
<tr>
<td>Texas</td>
<td>$33,750</td>
<td>$30,724</td>
<td>$27,658</td>
</tr>
<tr>
<td>N. Carolina</td>
<td>$33,501</td>
<td>$30,475</td>
<td>$27,410</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>$32,435</td>
<td>$29,409</td>
<td>$26,344</td>
</tr>
<tr>
<td>Ohio</td>
<td>$32,242</td>
<td>$29,216</td>
<td>$26,151</td>
</tr>
<tr>
<td>Michigan</td>
<td>$32,740</td>
<td>$30,714</td>
<td>$27,650</td>
</tr>
<tr>
<td>Indiana</td>
<td>$31,458</td>
<td>$28,432</td>
<td>$25,367</td>
</tr>
<tr>
<td>Ontario</td>
<td>$30,800</td>
<td>$27,775</td>
<td>$24,710</td>
</tr>
<tr>
<td>Florida</td>
<td>$29,539</td>
<td>$26,514</td>
<td>$23,449</td>
</tr>
<tr>
<td>Quebec</td>
<td>$25,952</td>
<td>$22,927</td>
<td>$20,860</td>
</tr>
<tr>
<td>Median</td>
<td>$25,500</td>
<td>$22,500</td>
<td>$20,500</td>
</tr>
</tbody>
</table>

Table 1: GDP Per Capita, Ontario and Selected North American Jurisdictions

Source: Statistics Canada, Bureau of Economic Analysis, Institute for Competitiveness and Prosperity
Note: In performance gap, black indicates a performance “lead” and red indicates a “gap.”
All figures in U.S. dollars, using purchasing power parity.
Our Approach to an Indicator System
Why an indicator system?
An indicator system helps Ontarians understand the linkages between economic strength and better quality of life. By deconstructing the components of this growth into discrete measurements, we will articulate the main drivers of economic progress, which, in turn, reveal the necessary preconditions for a rising standard of living. The indicator system also serves as a tool for decision makers in government and industry. It identifies both problems and opportunities for policymakers and business leaders, and indicates possible initiatives for improvement. Used consistently over time, indicators can help track changes and trends in economic performance, thereby revealing where policy might best be employed to spur ongoing improvements in Ontarians’ quality of life.

Our objective is to create an integrated system, as opposed to a set of unrelated measurements, that will result in a coherent picture of Ontario’s economic challenges and provide a basis for debating and discussing workable policy solutions.

Some Cautions About Indicators Systems
Measuring Ontario’s performance against other jurisdictions requires the practical process of selecting appropriate measurements. Often, gathering data on the actual measure presents insurmountable measurement problems. For example, the concept of “competitiveness” lacks a precise, agreed upon definition and there is no consistent data collection system for competitiveness. We need to reflect on what specific measurable indicators lead to competitiveness.

The goal of benchmarking is to create an objective set of criteria by which various jurisdictions can be ranked. Ideally, all data sources are available, accurate, and comparable. But in practice, particularly at the state and province level, data are collected using different meas-
Institute for Competitiveness and Prosperity

Indicators: The basic criteria
The end-goal of an indicator system must drive the development of individual indicators. In this case, policy solutions must be derived from the trends and changes we measure. In order to best serve the Task Force’s needs, the Institute will select indicators that:

- Provide a causal model: the Indicator System should examine and explain the gap between potential and actual performance.
- Be actionable: the System should suggest practical policy recommendations on how to narrow this gap.
- Focus on microeconomic factors: the System should focus on forces that operate at the firm, individual, and cluster level.

Our Indicator System, as shown in Figure 1 below, has two elements: the descriptive and the explanatory. The descriptive set of measures (profile, intensity, utilization and effectiveness) shows Ontario’s performance, relative to other North American jurisdictions. There is value in “telling the story” of Ontario’s GDP per capita, but we recognize also that in order for the system to provide value to policymakers, there must be a set of measures that explain Ontario’s economic performance (attitudes, investments and motivations).

GDP per capita is closely related to the kinds of outcomes desired by Ontarians – quality of life, healthy residents, educational opportunities, a clean environment, etc. At the national level there is strong evidence that higher GDP per capita correlates with quality of life measures, such as the United Nations Human Development Index.¹

Figure 1: Regional Economic Competitiveness Indicator System

Factors driving Innovation & Upgrading... \[...\]...effected through... \[...\]...to achieve economic results...

¹ We recognize that there is a degree of autocorrelation here as GDP per capita is a primary component of the HDI. For a discussion on the limitations of GDP as a measure, see Box 1: GDP as a Measure.
Why GDP Per Capita?
We are proposing GDP per capita as our key economic indicator of prosperity for two reasons.

First, GDP measures the output of an economy in terms of value added – that is to say, how well Ontarians have converted the province’s natural, capital and labour resources into products and services that consumers will buy here and around the world. As a value-added concept it ties directly to productivity, which is an important element of our economic progress. GDP also includes government expenditures. Dividing GDP by population allows for comparisons with other jurisdictions as well as changes over time not generated solely by population growth. We acknowledge that while most observers and practitioners accept GDP as the best measure of economic growth, some prefer other measures. We point out, however, that GDP correlates quite closely with other measures that are offered as alternatives, for example, Gross National Product, Personal Income, and Personal Disposable Income.

Second, GDP allows for easy benchmarking against other jurisdictions. It is the most commonly reported statistic at national and state or province levels. Clearly, other jurisdictions have reached the same conclusion on the value of GDP per capita. As an important part of the Institute’s mandate is to benchmark against other jurisdictions this availability takes on added importance.

Box 1: GDP as a Measure

Gross Domestic Product measures all the economic activity within a given country. Over decades of practice, economists have honed their techniques to make GDP per capita a robust and precise measure of all economic transactions in a nation. The word “transactions” is important here – GDP measures only activity that is recorded as an economic transaction, whatever that transaction may be.

But GDP is, simply, a gross measure of economic activity. It includes everything from restaurant meals to cigarette sales to new home sales to environmental clean-up. It does not differentiate between “good” and “bad” transactions. GDP also fails to capture the impact of unpaid work (which can include child care and elder care), volunteer work and other unpaid activities that clearly benefit society.
Mapping the Performance Gap
In this section we focus on describing Ontario’s GDP per capita performance against other North American jurisdictions. Our goal is to measure Ontario’s gap versus the peer group, and identify the key contributors to this gap. We begin with the four components of GDP per capita – *profile, intensity, utilization, effectiveness* – and further subdivide these measures to arrive at eight drivers that explain the differences between Ontario and other jurisdictions.

Table 3 on page 19 summarizes Ontario’s current performance on the six of these drivers for which data are available. As shown previously, Ontario’s GDP per capita is 13.8 per cent below median performance of these 16 jurisdictions.

By deconstructing the components of Ontario’s lagging GDP per capita, we are able to identify some useful case studies. One jurisdiction that stands out is Georgia. We’re particularly interested in Georgia because, as seen in Figure 7 and Table 3, its degree of urbanization is similar to Ontario. Yet its *effectiveness* is higher. Like Ontario, the state’s economy is dominated by a large metropolitan area. Its *profile* is the same as Ontario’s. Unlike Ontario, however, its mix of clusters is not an advantage. However, its *utilization* and *effectiveness* exceed Ontario’s. The state has achieved above-average economic growth over the last decade, moving from an under-performer to an above average jurisdiction in GDP per capita. One part of Georgia’s experience is its efforts at strengthening the entire innovation process – from research through commercialization and this is discussed in Box 6: Georgia’s Smart Investment in Innovation. The Institute intends to analyze other states for lessons learned that may be applicable to Ontario.
<table>
<thead>
<tr>
<th>GDP per Capita component</th>
<th>Sub-division</th>
<th>Definition</th>
<th>Indicates…</th>
</tr>
</thead>
</table>
| Profile | | Proportion of all Ontarians who are between 15 and 64 | • the demographic dependency of the population
| | | | • attractiveness of Ontario as a place to work and live |
| Intensity | | Average number of hours worked by typical employee | • attitudes of individuals – how do people value work/leisure trade-off?
| | | | • motivations for firms to employ people for more hours |
| Utilization | Participation Rate | Proportion of working age people who are in the labour force (i.e., employed or seeking employment) | • Ontario's willingness to work
| | | | • buoyancy of the economy, as people will be encouraged to enter the job market if more jobs are being created |
| | Employment Rate | Proportion of labour force (the numerator of the Participation Rate) who are employed | • the economy's strength in providing jobs
| | | | • willingness of people to accept wages being offered and the kinds of jobs being created |
| Effectiveness | Mix of Ontario's clusters | How Ontario's effectiveness would vary if its mix of clusters of traded industries, natural resources industries, and local industries were the same as its peer group | • the attractiveness of Ontario's mix of industries to effect economic performance |
| | Content of Ontario's clusters | How Ontario's effectiveness would vary if the composition of its traded clusters were similar to its peer group (see p. 10 and pp 36-43 in first Working Paper) | • the existence of a systematic skew within our clusters toward sub-clusters that pay lower or higher wages |
| | The degree of urbanization | How Ontario's effectiveness would vary if its degree of urbanization were similar to its peer group | • the potential of agglomeration of people and industry to drive productivity (effectiveness) |
| | Other Effectiveness Drivers | Ontario's own- or under-performance not accounted for by the effectiveness drivers listed above | • Ontario's own- or under-performance, given the mix of clusters and degree of urbanization |
Box 2: Mapping the Performance Gap

The attached “waterfall” chart displays the components of the performance gap which is the difference between Ontario’s GDP per capita and the median of the 16 jurisdictions in our peer group.

Ontario’s GDP per capita of $30,420 is shown on the far left of the chart. The median of the peer group, $35,300 is shown on the far right. The intervening bars represent the contribution of each of the six prosperity drivers to the $4,880 gap.

Figure 2: Mapping the Performance Gap (US $000)

Our analysis indicates that, in fact, some of the drivers represent advantages for Ontario’s economic performance. These drivers actually widen the performance gap and are shown as negative values in black. Taking each factor in turn:

• Our demographic profile is, in fact, an advantage for Ontario’s economy as a higher percentage of our population is of working age. In effect, this expands the GDP per capita performance gap by about $800.

• Similarly, the participation component of utilization is also an advantage for Ontario’s economy as more of our working age population is in the work force. This expands the performance gap by another $100.

• Strengthening our employment rate, the other component of utilization, to median performance would close the performance gap by about $700. The net effect of the two utilization drivers (which is not shown separately on the waterfall chart) is to account for about $600 of the total $4,880 performance gap.

• Turning to the first of the three components of effectiveness, our mix of clusters is an advantage to our economic performance, adding about $800 to the per capita GDP performance gap.

• The second component of effectiveness, our relatively low degree of urbanization is a disadvantage to our economic performance with a negative impact of GDP per capita of about $2,700.

• Finally we show other effectiveness drivers. Ontario’s effectiveness, after allowing for its degree of urbanization and cluster mix is $3,200 per capita below its peer group.

In summary, the waterfall chart displays the relative importance of the effectiveness drivers in Ontario’s performance gap versus its peer group. Profile is in fact an advantage. Intensity, which is not shown here, is not likely a significant part of Ontario’s performance gap given the closeness of results between Canada and the United States. Utilization is shown to be a modest part of the performance gap.

3 Currently we are unable to capture comparable data for two of the drivers: intensity and the effectiveness driver that measures the content of our traded clusters.
This analysis presents implications for Ontario and its aspirations. Do we want to achieve median performance and over what time horizon? Do we want to be in the top four of the 16 jurisdictions? Do we want to advance one place each year?

In setting aspirations we will most likely need to acknowledge that our target will be advancing as the peer group jurisdictions increase their GDP per capita (2.4 per cent annually based on real growth rates of the last five years).

In the remainder of this section, we describe the eight prosperity drivers in detail and compare Ontario’s particular performance on the six drivers (for which data are available) against the 15 other North American jurisdictions. Table 3 shows the performance gaps and leads among the peer group. The eight jurisdictions with GDP per capita above median performance have a performance lead; the eight below median performance have a performance gap. The lead or gap is calculated as the difference from median performance. A lead is shown in black and a gap in red. The table also shows the make-up of each jurisdiction’s performance lead or gap.

Numbers in black are advantages for the jurisdiction; red numbers are disadvantages. (Calculations for Ontario are shown in the following pages).

Only Massachusetts has all performance drivers pointing in the same direction. All others are a combination of positive (black) and negative (red) drivers. The net effect of these drivers is the performance lead (black) or gap (red).

Table 3: Performance Gap Calculations, Ontario and Selected North American Jurisdictions

<table>
<thead>
<tr>
<th>Profile Utilization Effectiveness</th>
<th>Performance Gap Calculations, Ontario and Selected North American Jurisdictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP per capita Profile Participation Employment Cluster mix Subsidaries Other Efficiency Drivers Performance Lead or Gap</td>
<td></td>
</tr>
<tr>
<td>Massachusetts $44,878 $135 $750 $656 $998 $4,448 $2,590 $9,578</td>
<td></td>
</tr>
<tr>
<td>New Jersey $43,151 $0 $73 $48 $448 $916 $6,463 $7,851</td>
<td></td>
</tr>
<tr>
<td>New York $42,115 $128 $2,952 $385 $288 $2,697 $7,295 $6,816</td>
<td></td>
</tr>
<tr>
<td>California $39,698 $0 $98 $605 $316 $4,155 $630 $4,398</td>
<td></td>
</tr>
<tr>
<td>Illinois $37,626 $171 $632 $42 $937 $885 $38 $2,326</td>
<td></td>
</tr>
<tr>
<td>Virginia $36,922 $958 $734 $172 $400 $1,002 $1,194 $1,623</td>
<td></td>
</tr>
<tr>
<td>Georgia $36,175 $88 $713 $172 $400 $3,362 $2,775 $875</td>
<td></td>
</tr>
<tr>
<td>Texas $33,598 $54 $1,374 $159 $37 $906 $1,914 $298</td>
<td></td>
</tr>
<tr>
<td>N. Carolina $35,002 $521 $49 $461 $908 $3,995 $3,673 $298</td>
<td></td>
</tr>
<tr>
<td>Pennsylvania $32,895 $919 $1,926 $40 $146 $145 $771 $2,405</td>
<td></td>
</tr>
<tr>
<td>Ohio $32,823 $452 $474 $120 $36 $1,377 $253 $2,477</td>
<td></td>
</tr>
<tr>
<td>Michigan $32,740 $149 $230 $176 $35 $150 $2,432 $2,560</td>
<td></td>
</tr>
<tr>
<td>Indiana $31,608 $76 $1,122 $512 $317 $6,122 $330 $5,891</td>
<td></td>
</tr>
<tr>
<td>Ontario $30,420 $805 $108 $713 $825 $2,853 $2,247 $4,880</td>
<td></td>
</tr>
<tr>
<td>Florida $29,539 $1,402 $2,086 $131 $1,000 $2,851 $4,255 $5,761</td>
<td></td>
</tr>
<tr>
<td>Quebec $25,052 $1,121 $1,324 $430 $104 $4,082 $4,834 $10,248</td>
<td></td>
</tr>
<tr>
<td>median $35,300 $0 $1 $1 $0 $3 $330 $0</td>
<td></td>
</tr>
</tbody>
</table>

Source: Statistics Canada; Bureau of Economic Analysis; Institute for Competitiveness and Prosperity
Institute for Competitiveness and Prosperity

1. Profile

Our analysis of profile indicates that Ontario’s economic performance is not negatively affected by its population profile. Sixty-eight per cent of Ontario’s population is between the ages of 15 and 64. The median performance of the 16 comparable jurisdictions is 66.2 per cent, suggesting that Ontario has relatively more people that are of working age, which is an economic advantage. Hence, our economic performance – as represented by GDP per capita – is 2.65 per cent higher than would otherwise be due to our favourable demographic profile. This widens our performance gap by $805 (2.65 per cent x Ontario’s GDP per capita $30,420). Note that the values may vary slightly due to rounding.

Figure 3: Profile of Ontario and Selected North American Jurisdictions

Source: Statistics Canada, 2001 Census; U.S. Census Bureau, Census 2000
2. Intensity

Intensity is the number of hours worked, divided by the total number of jobs. A relatively high level of intensity is not necessarily desirable; high-value products and jobs are not created simply by working more hours. In addition, a highly productive economy allows its participants to choose more leisure thus reducing intensity. Nevertheless we need to measure the impact of intensity on Ontario’s economic performance vs. the other jurisdictions.

This measure presents a significant data problem as comparable figures for hours worked at the provincial and state levels are simply not available. In Canada, the provincial data that are collected only represent hourly workers. In the United States, the available state data collected covers non-supervisory, production workers (which are mostly in manufacturing industries). This issue of comparability is significant because Canadian hourly workers typically work fewer hours than the American non-supervisory production workers. There is a systematic bias at the state/province level that makes direct comparison impossible.

At the national level, Figure 4 shows that in nearly every one of the last 20 years, Canadians worked fewer hours than their American counterparts. Canadian workers put in more hours than Americans in 1989, but presumably, the 1990-91 recession played a role in the sharp decrease in average weekly hours in the years following.

Indeed, it took a full ten years before the Canadian economy supported the same number of worker hours as the American economy. Again, the economic slowdown of 2001 coincided with a decrease in Canada’s relative position.

This suggests that while Canadian workers were making steady gains in hours worked throughout the 1980s, these gains were lost in the 1990s. It suggests that Canada’s intensity level is vulnerable to the business cycle, as seen by the deep impact of the 1990-91 recession in Canada.

The chart also indicates a slightly steeper long-term decline in hours worked in the U.S. – possibly indicating a preference for greater leisure made possible by better productivity performance.

If Ontario’s actual intensity were the same as Canada’s and the U.S. peer group’s average were the same as the U.S. average, intensity would be shown to reduce our GDP per capita by 1.1 per cent. However, since comparable results are not available for the peer group we are making no adjustment for intensity in this Working Paper. We will continue our efforts at deriving comparable measures and make changes to the Indicator System if we are successful.

Figure 4: Average Weekly Hours Worked, U.S. vs. Canada
3. Utilization: Participation rate

The participation rate and the employment rate (which is analyzed below) combine to make up utilization, as described in the identity equation above.

Ontario's participation rate compares favourably with the other 15 jurisdictions we are analyzing. In Figure 5, we show a five-year simple average for the years 1994-8 (the most recently available data at the U.S.-state level).

Ontario's average participation rate is 65.0 per cent, 0.34 per cent above median performance. Consequently this positively affects our GDP per capita performance by the same percentage (or $103). This indicates that efforts to improve our participation rate may have limited impact on our overall economic strength.

4. Utilization: Employment rate

Ontario's performance in its employment rate—the other half of utilization—is shown in Figure 6. These results indicate that Ontario's employment rate is somewhat lower than median performance of the U.S. peer group. Some definitional and measurement differences between jurisdictions may account for this small difference. The other conclusion from Figure 6 is that Ontario's gap in employment rate against the U.S. peer group has been closing over the past few years. Ongoing improvement in the employment rate represents an opportunity for closing the GDP per capita performance gap. Based on the most recent four years' results, the under-performance currently represents 2.3 per cent of Ontario's GDP per capita, or $713.
Effectiveness: Degree of Urbanization

City regions are increasingly important geographic entities because of their capacity to create economic activity and drive productivity.

Firms located in dense urban areas have customers that are located nearby and can therefore save on shipping costs. Firms in large rural areas must pay these shipping costs even for their local customers, and, chances are, many of their customers are located in larger, distant cities.

Cities are also "thick" labour markets with greater concentration and variety of skilled personnel. This serves both firms and employers. Firms locate in urban areas in order to draw on this pool of skilled labour. Likewise, individuals have a form of "labour market insurance" when they live in a city where there is more than a single employer (Glaser, 2000). In Figure 7, we map productivity of the 16 jurisdictions against the percentage of their populations living in city areas (Census Metropolitan Areas in Canada, Metropolitan Statistical Areas in the U.S.) greater than 100,000.

The figure shows three important findings.

First, there appears to be a relationship between urbanization and productivity. As we discussed in our first Working Paper, much of the economic benefit of urban areas stems from the physical proximity of the various players in an industry cluster. When highly skilled people, competitive firms, and related research institutes are all located near each other, the number of social and economic interactions increase. This constant opportunity for interaction spurs innovation and the further development of economic clusters.

The correlation between urbanization and productivity indicates an r-squared of 0.44, which means 44 per cent of the variance in productivity between jurisdictions is related to their degree of urbanization.

Second, the figure shows that Ontario is significantly less urban than most other states, especially the highly productive Massachusetts and California. Obviously the degree of urbanization does not explain all differences in productivity – but it is a factor.

Third, the figure shows that Georgia and North Carolina have a similar degree of urbanization as Ontario but have productivity about 10 per cent higher than Ontario. Further investigations into these jurisdictions should yield insight into their economic performance success relative to their low degree of urbanization. Our analysis indicates that if Ontario’s degree of urbanization were equal to the median of the sixteen jurisdictions our effectiveness, and hence GDP per capita, would be 8.7 per cent higher. The urbanization drivers therefore account for $2,653.

Figure 7: Per Cent of Population in Urban Areas vs. Labour Productivity

4 For a more complete overview of urbanization and economic development see our Working Paper No. 1.
Table 4: Ontario’s Mix of Clusters

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace Engines</td>
<td>0.05%</td>
<td>0.08%</td>
<td>$49,894</td>
</tr>
<tr>
<td>Aerospace Vehicles and Defense</td>
<td>0.20%</td>
<td>0.23%</td>
<td>$57,472</td>
</tr>
<tr>
<td>Agricultural Products</td>
<td>0.15%</td>
<td>0.16%</td>
<td>$48,413</td>
</tr>
<tr>
<td>Analytical Instruments</td>
<td>0.28%</td>
<td>0.37%</td>
<td>$52,814</td>
</tr>
<tr>
<td>Apparel</td>
<td>0.34%</td>
<td>0.67%</td>
<td>$56,090</td>
</tr>
<tr>
<td>Automotive</td>
<td>2.82%</td>
<td>1.36%</td>
<td>$58,095</td>
</tr>
<tr>
<td>Building Equipment, Equipment and Services</td>
<td>1.61%</td>
<td>0.63%</td>
<td>$58,346</td>
</tr>
<tr>
<td>Business Services</td>
<td>3.46%</td>
<td>3.31%</td>
<td>$60,765</td>
</tr>
<tr>
<td>Chemical Products</td>
<td>0.44%</td>
<td>0.46%</td>
<td>$69,663</td>
</tr>
<tr>
<td>Communications Equipment</td>
<td>0.61%</td>
<td>0.48%</td>
<td>$56,758</td>
</tr>
<tr>
<td>Construction Materials</td>
<td>0.13%</td>
<td>0.14%</td>
<td>$52,745</td>
</tr>
<tr>
<td>Distribution Services</td>
<td>3.81%</td>
<td>3.85%</td>
<td>$53,670</td>
</tr>
<tr>
<td>Education and Knowledge Creation</td>
<td>2.68%</td>
<td>2.20%</td>
<td>$53,279</td>
</tr>
<tr>
<td>Entertainment</td>
<td>1.41%</td>
<td>0.94%</td>
<td>$49,322</td>
</tr>
<tr>
<td>Financial Services</td>
<td>5.61%</td>
<td>9.31%</td>
<td>$58,115</td>
</tr>
<tr>
<td>Fishing and Fishing Products</td>
<td>0.03%</td>
<td>0.03%</td>
<td>$49,745</td>
</tr>
<tr>
<td>Food</td>
<td>0.66%</td>
<td>0.36%</td>
<td>$47,061</td>
</tr>
<tr>
<td>Forest Products</td>
<td>0.33%</td>
<td>0.34%</td>
<td>$48,172</td>
</tr>
<tr>
<td>Heavy Construction Services</td>
<td>3.38%</td>
<td>3.34%</td>
<td>$60,025</td>
</tr>
<tr>
<td>Heavy Machinery</td>
<td>0.53%</td>
<td>0.62%</td>
<td>$69,314</td>
</tr>
<tr>
<td>Hospitality and Tourism</td>
<td>1.54%</td>
<td>1.68%</td>
<td>$60,175</td>
</tr>
<tr>
<td>Information Technology</td>
<td>0.74%</td>
<td>0.83%</td>
<td>$79,758</td>
</tr>
<tr>
<td>Jewelry and Precious Metals</td>
<td>0.25%</td>
<td>0.28%</td>
<td>$78,325</td>
</tr>
<tr>
<td>Automotive Parts and Springing Goods</td>
<td>0.14%</td>
<td>0.31%</td>
<td>$53,935</td>
</tr>
<tr>
<td>Lighting and Electrical Equipment</td>
<td>0.24%</td>
<td>0.21%</td>
<td>$47,628</td>
</tr>
<tr>
<td>Medical Devices</td>
<td>0.25%</td>
<td>0.25%</td>
<td>$69,015</td>
</tr>
<tr>
<td>Metal Manufacturing</td>
<td>2.18%</td>
<td>1.38%</td>
<td>$46,382</td>
</tr>
<tr>
<td>Motor Vehicle Parts</td>
<td>0.61%</td>
<td>0.92%</td>
<td>$55,752</td>
</tr>
<tr>
<td>Oil and Gas</td>
<td>0.19%</td>
<td>0.13%</td>
<td>$48,235</td>
</tr>
<tr>
<td>Pharmaceuticals</td>
<td>0.26%</td>
<td>0.28%</td>
<td>$53,285</td>
</tr>
<tr>
<td>Plastics</td>
<td>0.85%</td>
<td>0.88%</td>
<td>$58,323</td>
</tr>
<tr>
<td>Power Generation</td>
<td>0.36%</td>
<td>0.27%</td>
<td>$48,301</td>
</tr>
<tr>
<td>Power Transmission and Distribution</td>
<td>0.16%</td>
<td>0.16%</td>
<td>$48,758</td>
</tr>
<tr>
<td>Printing and Publishing</td>
<td>0.24%</td>
<td>0.28%</td>
<td>$53,695</td>
</tr>
<tr>
<td>Precision Products</td>
<td>0.16%</td>
<td>0.13%</td>
<td>$54,756</td>
</tr>
<tr>
<td>Production Technology</td>
<td>0.84%</td>
<td>0.84%</td>
<td>$79,696</td>
</tr>
<tr>
<td>Publishing and Printing</td>
<td>1.56%</td>
<td>0.55%</td>
<td>$48,566</td>
</tr>
<tr>
<td>Quake</td>
<td>0.77%</td>
<td>0.86%</td>
<td>$63,815</td>
</tr>
<tr>
<td>Rail</td>
<td>0.04%</td>
<td>0.05%</td>
<td>$53,195</td>
</tr>
<tr>
<td>Transportation and Logistics</td>
<td>1.24%</td>
<td>0.33%</td>
<td>$56,035</td>
</tr>
<tr>
<td>Total Clusters of Traded Industries</td>
<td>61.18%</td>
<td>32.79%</td>
<td>$41,399</td>
</tr>
<tr>
<td>Local Industries</td>
<td>58.82%</td>
<td>67.21%</td>
<td>$47,748</td>
</tr>
<tr>
<td>Natural Resource Industries</td>
<td>2.11%</td>
<td>0.54%</td>
<td>$56,951</td>
</tr>
<tr>
<td>Total</td>
<td>100.00%</td>
<td>100.00%</td>
<td>$32,078</td>
</tr>
</tbody>
</table>

Average (US) wage given Ontario’s current mix $33,257
Average (US) wage given average mix of 14 US jurisdictions $32,078
Ontario’s Over Performance given its attractive mix 3.7%
6. Effectiveness: Mix of Clusters
As shown in our first Working Paper, clusters of traded industries achieve much higher productivity and wages. In addition there are differences between clusters in their productivity and wage performance. We assess Ontario’s cluster/local resource industry mix-up against its peer group to estimate the impact of this mix on our performance gap.

Table 3 shows Ontario’s mix of clusters against the typical mix of clusters for the 14 U.S. jurisdictions. It also shows average wages in each of the 41 clusters of traded industries, local industries, and natural resources. Finally, it shows how Ontario’s average wage would differ if our mix of clusters mirrored the 14 U.S. jurisdictions.

Two points need to be kept in mind in reviewing this analysis. First, our primary goal is to measure the impact of mix on effectiveness — value added per employee or hour of work. However, value added per employee is not easily available at the cluster level in the U.S. or Canada. We are turning to average wages as a proxy. There is a strong correlation between value added and wages and we are applying that relationship to wage differences to derive impact on effectiveness. Second, we are applying U.S. wage results to Ontario’s and its peer group’s mix to isolate the wage difference — and therefore the effectiveness — difference that is attributable to mix.

This analysis indicates that Ontario’s mix of clusters raises average wages by 3.7 per cent above what could be expected if our mix were the same as our peer group. This derives from our strength in Automotive, Business Services, Financial Services, Metal Manufacturing, and other traded clusters. Based on the relationship between wages and productivity (effectiveness) this translates to a 2.7 per cent over-performance in effectiveness — and hence in GDP per capita. In other words, Ontario’s attractive mix of clusters of traded industries boosts our GDP per capita by 2.7 per cent (or $825) versus what it would be if our mix were similar to the 14 U.S. jurisdictions we are studying. This is already a strength of the Ontario economy — attempts to improve our overall cluster mix may have limited leverage for improvement.

7. Effectiveness: Cluster Content
One of the current issues being discussed by business analysts and economists is “hollowing out.” Some observers believe that Ontario is losing the high value-added components of its industries as head offices and decision making relocate outside of Canada. We intend to measure this phenomenon at the cluster level by analyzing Ontario’s sub-cluster mix in a process similar to the analysis conducted in Table 3. This particular data analysis requires extensive recalibration of data from existing sources — a significant undertaking that is months long. Consequently, this is an ongoing research commitment for the Institute, the results of which we will report as the requisite steps are completed.

At this stage of our research, we cannot attribute a portion of the performance gap to cluster content.

8. Effectiveness: Other Drivers
As Box 2: Mapping the Performance Gap shows, the most significant part of the performance gap is attributable to effectiveness. We have been able to account for profile and utilization and estimate that intensity has limited impact. We have accounted for some elements of effectiveness — related to urbanization and to our clusters of traded industries. The remaining part of the performance gap, or $3,247, is therefore related to effectiveness on a basis of like-to-like urbanization and cluster mix. At this point, however, we are unable to be more precise about the specific factors at play. The analytical challenge is to understand the other effectiveness drivers that have leverage for shrinking the performance gap.

We intend to measure GDP per capita and map our performance gap periodically and report to Ontarians our collective progress. As important as they are, these measures are only descriptive. We think it important to develop measurements around innovation and upgrading factors that drive our performance. We propose an approach in the next section.
The Capacity for Innovation and Upgrading:

- Attitudes
- Investments
- Motivations
The Capacity for Innovation and Upgrading: AIM

In the previous sections of this Working Paper we have described how we propose to tell the story of Ontario’s economic performance, over time and against other North American jurisdictions. We now turn to the part of the Indicator System that describes our capacity for innovation and upgrading which is the driving force behind our economic performance.

A region’s ability to increase its prosperity is dependent on many factors including its macroeconomic environment, its microeconomic foundations for business and individual success and its social and environmental health. In successful regions these factors interact to create self-sustaining systems that promote innovation and upgrading.

The capacity for innovation and upgrading is the core component of our Indicator System. It represents an integrated system of the following three elements:

- Attitudes towards competitiveness, growth, and relative global excellence
- Investments in education, research and development, and commercialization
- Motivations for hiring, working, and upgrading.

Figure 8: Factors Driving Innovation & Upgrading: The AIM Model
These three components of this AIM system are represented in Figure 8.

Although the presence of each one of these elements in a region is essential for building a region’s capacity for innovation and upgrading, it is their ongoing interaction that ensures the region’s ability to sustain economic prosperity.

These elements work at the level of the individual and organizations, which in turn can be stand-alone firms or parts of industry clusters. Our first Working Paper showed the importance of clusters of traded industries — applying the work of Michael Porter and the Institute for Strategy and Competitiveness to Ontario Porter’s diamond model (see Figure 9, below) for clusters is well established and we propose to build on it within AIM.

We discuss the three elements of AIM and their interaction at these three levels: the individual, the firm, and the cluster.

Attitudes

Success in any field of endeavour is often predicated on attitudes — the “softness” of aspirations, the self-confidence to succeed, the search for challenge and competition, etc. This is true for the economic results for individuals and organizations and we intend to build this in to our measurement system for Ontario’s economic success. Some examples of what and how we propose to measure at each level — the individual, the firm, and the cluster follow.

With respect to individuals’ attitudes, work completed for the U.S.-based Council on Competitiveness by a team lead by Michael Porter, points to the importance of people’s attitudes towards competition in the development of regional economic strength. International studies by Michael Fairbanks and others have shown attitudes toward competitiveness — such as aspirations for business excellence that go beyond using low-cost labour and raw materials — to be key drivers of economic growth. We propose to develop measures of Ontarians’ attitudes in these areas relative to individuals in the peer group jurisdictions.

From another perspective on attitudes, Richard Florida, a professor of regional economic development at Carnegie Mellon University has demonstrated the importance of the “creative class” in local economies and the role attitudes play in their desire to work. These creative people are motivated to excel in their chosen field and desire to be judged on their merits. Regions that are more open to creative individuals and to immigration in general have been shown by Florida to perform better economically (see Box 3: The Creative Class and Economic Growth for more detail on Florida’s recent research and the Institute’s collaboration with him).

At the firm level, attitudes, particularly business leaders’ aspirations for global competitiveness, are critical determinants of our success. Work done by the Clusters of Innovation Initiative and others points to the importance of attitudes towards the desirability of growth and expansion of international competitiveness as important conditions for economic success. Attitudes towards collaboration may also be important sources of innovation and upgrading. For example, Porter and his research team found that relatively more business leaders in San Diego considered the transfer of knowledge from universities to be a competitive advantage than did those in Wichita or Atlanta. This suggests the attitude toward industry-university collaboration differs between regions and may play a role in the relative strength of knowledge-intensive industries in the San Diego region.

Attitudes within clusters of traded industries towards relentless improvement and upgrading are forged by the pressure from “firm strategy and rivalry” and from “demanding customers” (see Figure 9). We intend to develop a measurement system to measure attitudes towards these pressures within specific clusters in Ontario.

Figure 9: The Porter Diamond

- The context shaping the types of strategies employed and the nature of local rivalry
- The nature of home demand for products and services
- The availability and quality of local suppliers and related industries
- Factor (input) conditions
- Related and supporting industries
- Demand conditions
Investments

In the second part of AIM we focus on public and private investments in strengthening Ontario’s capacity for innovation and upgrading. We are proposing not simply to measure the level of investments, but also how these investments build capacity. We will explore opportunities for measuring barriers to private sector involvement in funding and creating value in these areas. We discuss measuring investments at the individual, firm, and cluster levels.

The importance of public and private investments to strengthen individuals’ capacity for upgrading and innovation is well appreciated. Returns on investment from education and training are well documented and the Indicator System would track such investments – over time and against other jurisdictions. Our intent is to develop measures of smart spending – identifying those that measure effectiveness, not just absolute spending.

Public and private investment in education also benefits firms by ensuring availability of skilled labour, researchers, and managers. To the extent possible we need to measure innovative practices at the firm level – as enabled by public research and development spending and firm-level training and knowledge management practices. We also need to measure Ontario’s firms’ success relative to our North American peer group in areas such as patents granted, venture capital raised and R&D as a percentage of GDP. Many of these statistics are gathered at the national level; our challenge will be to gather them at the provincial and state levels. In Box 4, we discuss investment in postsecondary education and its impact on economic development.

Public and private investments in human resources, physical infrastructure, scientific and technological infrastructure, and other elements of “factor (input) conditions” (see Figure 9) are critical to the success of traded clusters. As with attitudes we are proposing to develop cluster-specific measures for investments.

Institute for Competitiveness and Prosperity

Box 3: The Creative Class and Economic Growth

In Working Paper No. 1, we referred to the work of economic development Professor Richard Florida about the interplay between cities, people, and economic growth and we continue to believe it is of great relevance to Ontario’s competitiveness.

People and cities have long been considered important factors for economic success. Florida, however, goes a step further to suggest that a discernable group of highly creative people, which he calls the “creative class,” is now the main determinant of a region’s economic growth. This group gravitates to cities that are diverse, open to people of different backgrounds and orientations, and have strong artistic communities.

The idea that the basis for a region’s competitiveness has evolved from its geographical assets, such as a deep harbour or its proximity to natural resources to the less tangible assets, such as the sophistication of its workforce, is not altogether new. Florida, however, asserts that it is not merely the skill of a region’s workforce that drives economic growth but its creativity.

Florida defines the creative class as any people who are creative in their approach to work. As such, people working in fields not traditionally thought of as creative, such as engineering or finance, might still belong to the creative class. Their creativity drives economic growth across all sectors of the economy.

Although the creative class seems heterogeneous on the surface, Florida suggests that they share similar attitudes and preferences in how and where they want to work. His research indicates that centres of innovation tend to be highly correlated with measures of demographic and cultural diversity. Florida has developed a “Creativity Index,” incorporating such measures as his own Bohemian index and Gary Gates’s Gay Index, to rank U.S. cities according to their appeal to the creative class. Not surprisingly, cities such as San Francisco, Austin, and Boston fare quite well on this index – all cities with thriving knowledge-based economies and cultural scenes.

This has significant potential ramifications for how cities and regions should go about encouraging economic growth. In subsequent papers, we will examine the findings of a joint study currently being undertaken by the Institute, the University of Toronto, and Professor Florida that will apply Florida’s methodology to Ontario’s and Canada’s cities.
Box 4: Postsecondary Education and Prosperity

Traditionally, the inputs for economic growth have been understood to be capital and labour. But some economists believe the shift toward knowledge-intensive economic activity has made the process more complex. The role that knowledge plays in economic growth is a growing debate in economic circles. Human capital – the ideas, skills, and expertise of people – is garnering attention as a fundamental input into the economic process.

This suggests that the education of the workforce is a fundamental driver of economic growth. Ample research has shown that level of schooling is one of the best predictors of the relative wealth of individuals. Highly educated individuals have higher wages and experience less unemployment. They even are healthier, live longer, and are less likely to be involved in crime than those with fewer years of schooling (Riddell, 2001).

At the national level, recent research has tied investment in postsecondary education to economic growth. In an international study by the Organization of Economic Co-operation and Development, researchers found a positive and significant relationship between number of years of schooling and per capita growth in output (Bassanini and Scarpetta, 2001). Riddell found a strong correlation between labour force quality (as measured by test scores) and per capita economic growth rates (Riddell, 2001).

Spending on postsecondary education is also believed to have several kinds of spillover effects on regions. The university has been shown to be the source of direct economic spillover effects by generating new business, and spinning off billions in economic activity. For example, the University of Waterloo in Waterloo, Ontario accounted for over $1 billion in economic activity in the local region and $1.6 billion province-wide (PriceWaterhouseCoopers, 2001). Graduates of the Massachusetts Institute of Technology have created over 4,000 companies worldwide, with total sales of US $232 billion (Bank Boston, 1997).

The university indirectly stimulates economic growth through the spillover of knowledge. As a centre for discovery, the university’s express purpose is to generate ideas. In this way, the university engenders an environment in which continual learning is supported. The leagues of graduates that enter the local economy interact with university-based researchers, thereby allowing the flow of tacit knowledge and ideas from industry, to university, and back again (Wolfe, 2000).

In addition to providing for a better educated workforce, spending on postsecondary education has been positively correlated with both innovation and high-technology productivity. For example, more research spending by universities has led to an increased number of patent applications, indicating that the university is a major source of new knowledge. Innovation at the firm level is reinforced by the firm’s interactions with university researchers, whose primary function is to discover new ideas. Spin-off companies and technology transfer are common results of university-industry relationships.

An excellent example of a successful regional innovation system is the high-tech powerhouse of California’s Silicon Valley. Local institutions Stanford University and the University of California at Berkeley were the birth places of many successful start-up companies. Sun Microsystems (so named for the Stanford University Network) was founded by three Stanford graduates and one Berkeley graduate. The social connections between university researchers and local entrepreneurs were one of the factors responsible for creating the high-tech boom in the region.

The university is one of many actors in the innovation process, but its role as a knowledge generator makes it a critical source of new knowledge. Spending on postsecondary education can be viewed as investing in one of the components of increasing productivity.

The challenge for the Indicator System is to gather postsecondary education data that can be compared across the peer group. Measurement difficulties include capturing:

- state and federal spending on a comparable basis
- private spending (from tuition, private research, and the like) in each state to complement public spending
- endowment income

An excellent example of a successful regional innovation system is the high-tech powerhouse of California’s Silicon Valley. Local institutions Stanford University and the University of California at Berkeley were the birth places of many successful start-up companies. Sun Microsystems (so named for the Stanford University Network) was founded by three Stanford graduates and one Berkeley graduate. The social connections between university researchers and local entrepreneurs were one of the factors responsible for creating the high-tech boom in the region.

The university is one of many actors in the innovation process, but its role as a knowledge generator makes it a critical source of new knowledge. Spending on postsecondary education can be viewed as investing in one of the components of increasing productivity.

The challenge for the Indicator System is to gather postsecondary education data that can be compared across the peer group. Measurement difficulties include capturing:

- state and federal spending on a comparable basis
- private spending (from tuition, private research, and the like) in each state to complement public spending
- endowment income

An excellent example of a successful regional innovation system is the high-tech powerhouse of California’s Silicon Valley. Local institutions Stanford University and the University of California at Berkeley were the birth places of many successful start-up companies. Sun Microsystems (so named for the Stanford University Network) was founded by three Stanford graduates and one Berkeley graduate. The social connections between university researchers and local entrepreneurs were one of the factors responsible for creating the high-tech boom in the region.

The university is one of many actors in the innovation process, but its role as a knowledge generator makes it a critical source of new knowledge. Spending on postsecondary education can be viewed as investing in one of the components of increasing productivity.

The challenge for the Indicator System is to gather postsecondary education data that can be compared across the peer group. Measurement difficulties include capturing:

- state and federal spending on a comparable basis
- private spending (from tuition, private research, and the like) in each state to complement public spending
- endowment income

An excellent example of a successful regional innovation system is the high-tech powerhouse of California’s Silicon Valley. Local institutions Stanford University and the University of California at Berkeley were the birth places of many successful start-up companies. Sun Microsystems (so named for the Stanford University Network) was founded by three Stanford graduates and one Berkeley graduate. The social connections between university researchers and local entrepreneurs were one of the factors responsible for creating the high-tech boom in the region.

The university is one of many actors in the innovation process, but its role as a knowledge generator makes it a critical source of new knowledge. Spending on postsecondary education can be viewed as investing in one of the components of increasing productivity.

The challenge for the Indicator System is to gather postsecondary education data that can be compared across the peer group. Measurement difficulties include capturing:

- state and federal spending on a comparable basis
- private spending (from tuition, private research, and the like) in each state to complement public spending
- endowment income
Institute for Competitiveness and Prosperity

Taxes on business and individuals are important elements of the motivations in our AIM model. In our view, the framework developed by Jack Mintz in his book, *Most Favored Nation* sets out a useful approach for comparing Ontario to other North American jurisdictions. Mintz’s approach captures both the taxes and the services provided by government to arrive at a net cost of doing business.

In summary, his approach separates out the net tax on labour and on capital and shows differences between Canada and the U.S. in various sectors of the economy.

To arrive at the net tax on labour, Mintz calculates personal and payroll taxes at the margin. He chooses marginal rates—the rate on the last dollar earned—instead of average rates to measure individuals’ incentives for working the extra hour and employers’ incentives to hire the next employee. From there, he subtracts government subsidies for health care, social security, and education. This approach captures the taxes paid by individuals and firms, as well as the benefits from government support for health care and education. He concludes that overall Canada’s net tax on labour for 2000 was 58.8 per cent versus 42.8 per cent in the U.S. In other words, for every wage dollar paid, net of taxes, to a Canadian employee, the employee and the employer between them pay 16 cents in taxes (net of subsidies). This is a full 16 cents higher than in the U.S.

Figure 12 shows the overall average and the results across 11 sectors. Our tax rate on labour is higher in 9 of the 11 (the exceptions being forestry and other services). There are also dramatic differences in the actual rates between sectors.

Box 5: Taxes and Motivations

![Figure 12: Marginal Effective Tax Rate on Labour, Net of Subsidies](image-url)
Mintz’s observations on the relative disincentives of Canada’s higher taxes relate to our indicators of innovation and upgrading. Noting the paradox of Canada’s high subsidies for corporate research and development and its low uptake, he suggests that higher taxes overall reduce the incentive to invest even if specific R&D subsidies are attractive.

The Institute believes that this avenue of investigation is fruitful and will be exploring Ontario’s tax rates against the selected U.S. jurisdictions.

Mintz finds a similar disadvantage for Canada in net taxes on capital concluding that overall Canada’s effective tax rate on capital net of subsidies is 24.0 per cent versus an average U.S. rate of 15.3 per cent. To arrive at the net tax on capital, Mintz captures corporate income taxes, capital taxes, and sales and excise taxes on capital before netting out capital subsidies provided by governments including grants and tax credits for investments such as R&D and infrastructure. This approach captures the tax, net of subsidies, on the marginal dollar of income as a percentage of the marginal investment dollars invested by firms.

Mintz’s work shows that in all 11 sectors Canada’s tax rate on capital is higher. It also shows the significant differences between sectors in both countries, especially in Canada.

Mintz’s conclusions from his work on tax rates are as follows:

- Canadian governments impair competitiveness of the business sector... [T]he Canadian tax disadvantage is much greater, swamping any gain from [Canada’s higher health care and education] subsidies...

- The tax/subsidy system is far from neutral in both countries, thereby impairing their comparative advantage and productivity. Thus Canada’s tax/subsidy regime is a barrier to growth.

Figure 13: Marginal Effective Tax Rates on Capital, Net of Subsidies

Motivations

The final element of AIM refers to the external drivers that shift or strengthen attitudes and leverage investments—the system of motivations, or incentives, in our economy.

The importance of motivations for individuals is a cornerstone of economic theory and practice. Marginal tax rates, the features of employment insurance, subsidies for education and training are among the many extrinsic or economic motivators that can stimulate individual economic behaviour that promote or diminish economic progress.

At the firm level, motivations relating to hiring decisions (e.g., payroll taxes, regulations, minimum wage) and investing for expansion (e.g., marginal tax rates net of subsidies) have been shown to be critical factors. In Box 5: Taxes and Motivations, we compare current marginal tax rates as calculated by Canadian tax expert, Professor Jack Mintz.

Another type of firm-level motivation can be measured by factors such as rates of absenteeism. Research has shown that firm-level decisions or workplace practices can affect productivity (Gunderson, 2002).

Motivations, to innovate are important to the success of industry clusters—driven by the pressure (as discussed above in attitudes) and support from “high quality specialized inputs” and “related and supporting industries.” In other words cluster participants are motivated by being forced to innovate and upgrade but also have better chances of success from such motivations given the support they receive from within the cluster.

Table 5 sets out the measures we are proposing for each element of the Capacity for Innovation and Upgrading.

Table 5: Measuring the Capacity for Innovation and Upgrading

<table>
<thead>
<tr>
<th>Potential measures</th>
<th>Data sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Views on entrepreneurial activity – benchmarked against other jurisdictions</td>
<td>Special studies commissioned and existing surveys</td>
</tr>
<tr>
<td>Richard Florida’s creativity indices</td>
<td>Development of Ontario-specific indices</td>
</tr>
<tr>
<td>Views on competitiveness by individuals, as demonstrated by commitment to training and upgrading</td>
<td>Special studies commissioned and existing surveys</td>
</tr>
<tr>
<td>Views on competitiveness by firms, as demonstrated by commitment to global excellence, collaborations and other indicators of competitive firm strategy</td>
<td>Special studies commissioned by the Institute</td>
</tr>
<tr>
<td>Individual views on importance of economic growth</td>
<td>Special studies commissioned by the Institute</td>
</tr>
<tr>
<td>Attitudes of competitiveness in industry clusters, as evidenced by number and strength of collaborations</td>
<td>Government and industry association statistics</td>
</tr>
<tr>
<td>Tax (net of subsidy), on labour and capital</td>
<td>Special analysis commissioned by the Institute</td>
</tr>
<tr>
<td>Employment regulatory burdens, relative to other jurisdictions</td>
<td>Adaptation of OECD framework to assessing the impact of regulatory burden on productivity growth</td>
</tr>
<tr>
<td>Social safety net relative to other jurisdictions</td>
<td>Government statistics</td>
</tr>
<tr>
<td>Tax benefits for training and upgrading</td>
<td>Best practices by other jurisdictions</td>
</tr>
<tr>
<td>Spending on higher education</td>
<td>Government statistics</td>
</tr>
<tr>
<td>Patents registered</td>
<td>Government statistics</td>
</tr>
<tr>
<td>Venture capital investment as per cent of GDP</td>
<td>Venture capital associations statistics</td>
</tr>
<tr>
<td>Private spending on R&D</td>
<td>Government statistics and proprietary data sources</td>
</tr>
<tr>
<td>Government and university spending on R&D</td>
<td>Government statistics</td>
</tr>
<tr>
<td>Government investment in transportation and communications networks</td>
<td>Government statistics</td>
</tr>
<tr>
<td>Number of university spin-off companies</td>
<td>Government statistics</td>
</tr>
<tr>
<td>Cluster / industry association investment in university-based research</td>
<td>Government and industry association statistics</td>
</tr>
</tbody>
</table>
How the Capacity for Innovation and Upgrading Drives Performance

As stated above, the eight drivers in the descriptive part of the model differ in how they can be affected by different policies and strategies. In this section we describe the interaction between AIM and GDP per capita performance.

AIM is most closely aligned with effectiveness and utilisation measures.

Effectiveness. Attitudes, investments, and motivations work together to make our individuals, firms, and clusters more productive and competitive. We shall be developing measures that affect clusters of traded industries as well as local industries and natural resources.

Utilisation. The first part of this factor, participation rate is driven by attitudes towards work and material well-being and by motivation to work as represented by economic factors such as marginal tax rates and employment insurance and welfare. The second part, employment rate is driven by firms’ motivations for hiring as represented by taxes on labour and employment regulatory burden.

The interaction intensity and profile will be more limited. The kinds of interaction in this area include:

Intensity. Some of the measures of attitudes towards work and of motivations to work and to hire have significant impact on people’s willingness to work more hours and employers’ capacity for providing more hours’ work.

Profile. Parts of the Creativity Index measure the openness of a region to outsiders and will be useful indicators of Ontario’s ability to attract working age immigrants, thereby improving its profile. Average personal tax rates will also be used to assess the attractiveness of Ontario relative to other jurisdictions.

Going forward, we intend to develop the measures in each of the three areas—attitudes, investments, motivations—and to develop a specific index number or grading scheme that relates Ontario to the other North American jurisdictions.
Institute for Competitiveness and Prosperity

undoubtedly been fueled by Georgia’s impressive rate of start-ups and new investment. Its leading research university, the Georgia Institute of Technology (Georgia Tech), placed in the 95th percentile for start-ups formed (Gray et al., 2002).

Its metropolitan areas, especially Atlanta, have become centers for vibrant, competitive high-wage technology clusters: from 1995-1999, Atlanta took in venture capital at a rate almost twice the national per capita average (Cortright et al., 2001). Perhaps most tellingly, Georgia’s research commercialization, which has been historically weak, leapt forward with year-to-year patent growth from 1990-98 at double the national average (Porter et al., 2001).

Georgia’s success is all the more remarkable, and puzzling, given that they have overcome significant historical weaknesses in innovation to become an innovation leader at a time when virtually every jurisdiction in North America was seeking similar technology-driven growth.

A closer look reveals that one critical element in Georgia’s becoming a magnet for technology growth lies in how the state approached upgrading its innovation process. It is through a more effective interaction and sharing of knowledge and resources between the public, private, and academic sectors. By funding world-class research, focusing on its commercialization, and sharing academia’s technology knowledge with smaller businesses across the state Georgia realized greater benefits from its innovative capacity.

Education: Governor Carl Sanders’ (1963-67) mission to upgrade Georgia’s university system was a catalyst in the state’s transformation from a rural economy to a knowledge-based economy. His election is widely viewed as a turning point for Georgia. After taking office, Sanders substantially grew Georgia’s university system, devoting 56 per cent of the 1963 budget to education, a significant increase from previous administrations (Cook, 1993). Sanders’ education initiative was launched with Georgia’s future prosperity as its end goal; he viewed a superior university system as critical to Georgia’s attracting high tech industries and federal research grants (Cook, 1993). Without Sanders’ far-sighted efforts, little of Georgia’s progress would have been possible.

Georgia ensures wide access to higher education. In Georgia in 1992 the public voted in a referendum to create a lottery (the state previously did not have a lottery), expressly for the purpose of raising funds for postsecondary scholarships. The result is the Hope Scholarship, now ten years old, that guarantees tuition at any state university for any high school senior with at least a B average. The scholarship also can be used toward the tuition at any private institution in the state.

Research: The Georgia Research Alliance (GRA) was formed in 1990 to address the first step in the innovation process, research. A group of prominent Atlanta businessmen provided the initial impetus for the GRA, and were committed enough to the idea to successfully make it a priority for both of Georgia’s gubernatorial candidates in 1990 (Combes et al., 1996). The GRA is a public body with a mandate to hire researchers, upgrade facilities, and buy new equipment. Through its Eminent Scholar Program, the GRA has relocated 32 leading scientists to Georgia. Funded by both the state and the private sector, the GRA’s efforts have resulted in over $600 million in sponsored research and placed two of Georgia’s universities in the top 20 for non-federal R & D funding (for 2000) (National Science Foundation, 2000).
Commercialization: The superiority of Georgia’s innovation strategy grows sharper in light of Pittsburgh’s experience. Although Pittsburgh spends more than twice the per capita national average on research, from 1990-98 patents in Pittsburgh grew at only one third the national rate (Porter et al., 2001). Pittsburgh’s leading-edge tissue research facility, for example, has yielded little commercial innovation. Poor commercialization mechanisms account for much of Pittsburgh’s relative underperformance (Porter et al., 2001). A steep decline in available venture capital, specifically, accounts for its lack of commercialization success in biotechnology (Smith et al., 2001). Even notable innovations which were successfully commercialized did not stay in the area, which points to the importance of a specialized work force in any innovation process. Professor Richard Florida, whose ideas are discussed elsewhere in this paper, has drawn attention to Pittsburgh’s difficulty in retaining high tech startups, such as Lycos, given the region’s lack of appeal to the creative class (Florida, 2002).

This pattern is more directly observable at the cluster level, in particular, the Biotechnology Cluster in Detroit, St. Louis, Houston, and Chicago. These jurisdictions have exceptionally strong research capabilities, each averaging more than $500 million in federal R & D funding (Cortright et al., 2001). Commercialization, however, has been weak, with low levels of startups and venture capital. Clearly, a critical piece is missing from the innovation process in these jurisdictions.

Georgia has avoided the pitfalls of Pittsburgh, Detroit, and St. Louis, by understanding that attention to the commercial innovation process does not end at research. The state and the private sector have made a concerted attempt to strengthen the linkages between research and the business community through a well-integrated network of organizations. The Faculty Research Commercialization Project offers support and funding to researchers at Georgia universities who are seeking to commercialize their research. The Advanced Technology Development Center, now a highly regarded incubator, was established in 1980 to ensure that the resulting start-ups are given the necessary funding, infrastructure, and support, to thrive, and has graduated 90 companies to date (Advanced Technology Development Center, 2002). Finally, the Economic Development Institute helps disseminate the engineering and technology know-how of the university system’s faculty to smaller and medium sized firms in more traditional industries across the state.

All three programs are headquartered at Georgia Tech, and are recognized by their peers as a model for university-technology industry partnerships. They have been ranked as the best out of similar programs across the top 164 U.S. research universities for university-industry technology partnerships (Gray et al., 2002). Critically, much of the drive to upgrade the innovation process in Georgia has come from the business sector itself (Combs et al., 1996). This has helped ensure that the organizations and innovation systems implemented by the state are useful and relevant to the end goal of commercialization.

Venture Funding: While venture funding may not be a strength for Georgia, neither does it seem to be a weakness. Venture funding for Atlanta (the primary locus of innovation in Georgia) is not among the U.S. leaders, but was still a robust $2.6 billion from 1995 – 2000. Unpublished research on the venture funding process in Canada, by contrast, indicates gaps in the venture funding available to startup companies as they mature (Choy et al., 2001).

Georgia’s innovation system is obviously not flawless, despite the Economic Development Institute’s best efforts, much of the commercial innovation is contained within the Atlanta area. Their K-12 education system is still a relative weakness. Nevertheless, Georgia gives us some direction on how to invest intelligently in a commercial innovation process. We see the importance of a cooperative approach between government, research institutions, and business, as well as the necessity of planning with a longer timeline in mind.

Georgia’s success demonstrates the importance of approaching innovation with an understanding of how to leverage existing institutions, such as research universities and venture capitalists, into an improved commercial innovation process. Admittedly, the linkages between the steps in the innovation process in Georgia / Atlanta are not yet as strong as in the likes of a jurisdiction such as San Jose or Boston. It must be kept in mind, however, that Georgia is comparatively new to the knowledge economy and does not have the hundreds of years of history of private and public research institutions of a Boston or the unique advantage of a world-class cluster as a San Jose.

Indeed, Georgia’s historical weakness at innovation and their past reliance on rural industries makes their transformation into an innovation-driven economy all the more impressive, and worthy of study. Georgia’s experience demonstrates that with cooperation, planning, and an appreciation of the different linkages involved in the innovation process, jurisdictions can significantly improve their innovative capacity. While Ontario has made strides in establishing stronger commercialization mechanisms, it can still learn from Georgia.
Identifying Environmental and Social Measures
Monitoring systems in other jurisdictions include non-economic measures to provide a fuller view of quality of life. The Michigan Economic Development Corporation measures air and water quality because it argues that fresh air and clean water are attractive to the highly skilled workers a competitive region requires. Ireland’s National Competitiveness Council measures income inequality in its annual Competitiveness Report because, the Council argues, social consensus drove Ireland’s recent growth, income inequality presents the potential of undermining that consensus.

We recognize that poor environmental performance and social costs have a negative effect on Ontario’s relative position. These issues represent a system of checks and balances to rising economic activity. Economic growth in inefficient and polluting industries can lead, if left unchecked, to environmental degradation, for example. As noted by recent research at the University of Victoria, Canada’s environmental performance, when compared to the OECD, needs improvement (Boyd, 2002). In terms of quality of life, Canada ranks consistently high, according to the UN Human Development Index.

Our Indicator System has as its focus the comparison of Ontario’s economic performance to U.S. states of similar population. Social and environmental fundamentals are important in supporting a rising standard of living. Our framework presupposes that a sound economic platform can support a rising quality of life. An economic analysis, therefore, is our point of departure.

As a system of monitoring, our Indicator System is designed to capture the level of economic activity. We will rely, therefore, on other quality-of-life indicator systems to provide a check on the ability of economic growth to support a better environment and social benefits.

The notion of competitiveness refers to a region’s capacity for wealth creation and the well-being of its people. A competitive region can support a rising standard of living because of its ability to create and expand opportunities. Many observers argue that various non-economic indicators, such as quality of life and the health of the environment, should be included in measurement of regional competitiveness.
Conclusion
This Working Paper outlines an indicator system that will serve as a guide for the selection and measurement of specific data that explain the performance gap between Ontario and its 15 peer-group jurisdictions in North America. The selection and measurement process will inevitably present data collection challenges but it is hoped that the Institute’s Indicator System will provide a conceptual framework that is sufficiently robust to mitigate the impact of these challenges.

The descriptive part of the Indicator System pinpoints both Ontario’s strengths and its opportunities for improvement. Ontario’s beneficial mix of industry clusters, participation rate in the labour market, and its demographic profile are all advantages. But Ontario’s effectiveness and rate of employment are its disadvantages.

Our ability to close this gap lies in the capacity to innovate and upgrade, the drivers of which are related to the AIM model (attitudes, investment and motivations).

Next Steps and Further Research
The Indicator System provides a framework for future research initiatives, based on the eight drivers of GDP per capita, and three drivers of innovation and upgrading. Consultations and future Working Papers will focus on issues such as:

• To what level of economic performance do Ontarians wish to aspire? Median performance? Top quartile? Steady improvement in our ranking among the peer group?

• What are the specific measures for attitudes? For investments? For motivations?

• Are there opportunities to improve Ontario’s innovation performance based on lessons learned from other jurisdictions such as Georgia and Massachusetts?

• How do we assess natural resource industries within the cluster approach?
How to Contact Us

To learn more about the Institute and the Task Force please visit us at: www.CompeteProsper.ca

Should you have any questions or comments, you may reach us through the website or at the following address:

The Institute for Competitiveness and Prosperity
180 Bloor Street West, Suite 1100
Toronto, Ontario
M5S 3V6
Telephone 416 920.1921
Fax 416 920.1922

Executive Director
James Milway
416 920.1921 x222
J.Milway@CompeteProsper.ca

Researcher
Sam Ladner
416 920.1921 x223
S.Ladner@CompeteProsper.ca

Office Manager
Mary Monaghan
416 920.1921 x224
M.Monaghan@CompeteProsper.ca

Research Assistants:

Chris Hilborn
C.Hilborn@CompeteProsper.ca

James Lanthier